3.210 \(\int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin (e+f x)}} \, dx\)

Optimal. Leaf size=222 \[ -\frac {\cot (e+f x) \sqrt {a+b \sin (e+f x)}}{a f}+\frac {\sqrt {\frac {a+b \sin (e+f x)}{a+b}} F\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{f \sqrt {a+b \sin (e+f x)}}-\frac {\sqrt {a+b \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{a f \sqrt {\frac {a+b \sin (e+f x)}{a+b}}}-\frac {b \sqrt {\frac {a+b \sin (e+f x)}{a+b}} \Pi \left (2;\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{a f \sqrt {a+b \sin (e+f x)}} \]

[Out]

-cot(f*x+e)*(a+b*sin(f*x+e))^(1/2)/a/f+(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticE
(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(b/(a+b))^(1/2))*(a+b*sin(f*x+e))^(1/2)/a/f/((a+b*sin(f*x+e))/(a+b))^(1/2)-
(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticF(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(b/(
a+b))^(1/2))*((a+b*sin(f*x+e))/(a+b))^(1/2)/f/(a+b*sin(f*x+e))^(1/2)+b*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin
(1/2*e+1/4*Pi+1/2*f*x)*EllipticPi(cos(1/2*e+1/4*Pi+1/2*f*x),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(f*x+e))/(a+b)
)^(1/2)/a/f/(a+b*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.50, antiderivative size = 222, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {2802, 3060, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ -\frac {\cot (e+f x) \sqrt {a+b \sin (e+f x)}}{a f}+\frac {\sqrt {\frac {a+b \sin (e+f x)}{a+b}} F\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{f \sqrt {a+b \sin (e+f x)}}-\frac {\sqrt {a+b \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{a f \sqrt {\frac {a+b \sin (e+f x)}{a+b}}}-\frac {b \sqrt {\frac {a+b \sin (e+f x)}{a+b}} \Pi \left (2;\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{a f \sqrt {a+b \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]],x]

[Out]

-((Cot[e + f*x]*Sqrt[a + b*Sin[e + f*x]])/(a*f)) - (EllipticE[(e - Pi/2 + f*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Si
n[e + f*x]])/(a*f*Sqrt[(a + b*Sin[e + f*x])/(a + b)]) + (EllipticF[(e - Pi/2 + f*x)/2, (2*b)/(a + b)]*Sqrt[(a
+ b*Sin[e + f*x])/(a + b)])/(f*Sqrt[a + b*Sin[e + f*x]]) - (b*EllipticPi[2, (e - Pi/2 + f*x)/2, (2*b)/(a + b)]
*Sqrt[(a + b*Sin[e + f*x])/(a + b)])/(a*f*Sqrt[a + b*Sin[e + f*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2802

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 -
 b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n
*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n
+ 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !
(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3060

Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]], x], x] - Dist[1/(b*d), Int[Sim
p[a*c*C - A*b*d + (b*c*C + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /;
FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin (e+f x)}} \, dx &=-\frac {\cot (e+f x) \sqrt {a+b \sin (e+f x)}}{a f}+\frac {\int \frac {\csc (e+f x) \left (-\frac {b}{2}-\frac {1}{2} b \sin ^2(e+f x)\right )}{\sqrt {a+b \sin (e+f x)}} \, dx}{a}\\ &=-\frac {\cot (e+f x) \sqrt {a+b \sin (e+f x)}}{a f}-\frac {\int \sqrt {a+b \sin (e+f x)} \, dx}{2 a}-\frac {\int \frac {\csc (e+f x) \left (\frac {b^2}{2}-\frac {1}{2} a b \sin (e+f x)\right )}{\sqrt {a+b \sin (e+f x)}} \, dx}{a b}\\ &=-\frac {\cot (e+f x) \sqrt {a+b \sin (e+f x)}}{a f}+\frac {1}{2} \int \frac {1}{\sqrt {a+b \sin (e+f x)}} \, dx-\frac {b \int \frac {\csc (e+f x)}{\sqrt {a+b \sin (e+f x)}} \, dx}{2 a}-\frac {\sqrt {a+b \sin (e+f x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (e+f x)}{a+b}} \, dx}{2 a \sqrt {\frac {a+b \sin (e+f x)}{a+b}}}\\ &=-\frac {\cot (e+f x) \sqrt {a+b \sin (e+f x)}}{a f}-\frac {E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (e+f x)}}{a f \sqrt {\frac {a+b \sin (e+f x)}{a+b}}}+\frac {\sqrt {\frac {a+b \sin (e+f x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (e+f x)}{a+b}}} \, dx}{2 \sqrt {a+b \sin (e+f x)}}-\frac {\left (b \sqrt {\frac {a+b \sin (e+f x)}{a+b}}\right ) \int \frac {\csc (e+f x)}{\sqrt {\frac {a}{a+b}+\frac {b \sin (e+f x)}{a+b}}} \, dx}{2 a \sqrt {a+b \sin (e+f x)}}\\ &=-\frac {\cot (e+f x) \sqrt {a+b \sin (e+f x)}}{a f}-\frac {E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (e+f x)}}{a f \sqrt {\frac {a+b \sin (e+f x)}{a+b}}}+\frac {F\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (e+f x)}{a+b}}}{f \sqrt {a+b \sin (e+f x)}}-\frac {b \Pi \left (2;\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (e+f x)}{a+b}}}{a f \sqrt {a+b \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 10.05, size = 315, normalized size = 1.42 \[ \frac {-4 \cot (e+f x) \sqrt {a+b \sin (e+f x)}+\frac {6 b \sqrt {\frac {a+b \sin (e+f x)}{a+b}} \Pi \left (2;\frac {1}{4} (-2 e-2 f x+\pi )|\frac {2 b}{a+b}\right )}{\sqrt {a+b \sin (e+f x)}}+\frac {2 i \sec (e+f x) \sqrt {-\frac {b (\sin (e+f x)-1)}{a+b}} \sqrt {-\frac {b (\sin (e+f x)+1)}{a-b}} \left (b \left (b \Pi \left (\frac {a+b}{a};i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (e+f x)}\right )|\frac {a+b}{a-b}\right )-2 a F\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (e+f x)}\right )|\frac {a+b}{a-b}\right )\right )-2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (e+f x)}\right )|\frac {a+b}{a-b}\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}}{4 a f} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]],x]

[Out]

(((2*I)*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[e + f*x]]], (a + b)/(a - b)] + b*
(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[e + f*x]]], (a + b)/(a - b)] + b*EllipticPi[(a +
b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[e + f*x]]], (a + b)/(a - b)]))*Sec[e + f*x]*Sqrt[-((b*(-1 +
 Sin[e + f*x]))/(a + b))]*Sqrt[-((b*(1 + Sin[e + f*x]))/(a - b))])/(a*b*Sqrt[-(a + b)^(-1)]) - 4*Cot[e + f*x]*
Sqrt[a + b*Sin[e + f*x]] + (6*b*EllipticPi[2, (-2*e + Pi - 2*f*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[e + f*x])/
(a + b)])/Sqrt[a + b*Sin[e + f*x]])/(4*a*f)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2/(a+b*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\csc \left (f x + e\right )^{2}}{\sqrt {b \sin \left (f x + e\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2/(a+b*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(csc(f*x + e)^2/sqrt(b*sin(f*x + e) + a), x)

________________________________________________________________________________________

maple [A]  time = 2.92, size = 412, normalized size = 1.86 \[ \frac {\sqrt {-\left (-b \sin \left (f x +e \right )-a \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (-\frac {\sqrt {-\left (-b \sin \left (f x +e \right )-a \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}{a \sin \left (f x +e \right )}-\frac {b \left (\frac {a}{b}-1\right ) \sqrt {\frac {a +b \sin \left (f x +e \right )}{a -b}}\, \sqrt {\frac {b \left (1-\sin \left (f x +e \right )\right )}{a +b}}\, \sqrt {\frac {\left (-\sin \left (f x +e \right )-1\right ) b}{a -b}}\, \left (\left (-\frac {a}{b}-1\right ) \EllipticE \left (\sqrt {\frac {a +b \sin \left (f x +e \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right )+\EllipticF \left (\sqrt {\frac {a +b \sin \left (f x +e \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right )\right )}{a \sqrt {-\left (-b \sin \left (f x +e \right )-a \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}+\frac {b^{2} \left (\frac {a}{b}-1\right ) \sqrt {\frac {a +b \sin \left (f x +e \right )}{a -b}}\, \sqrt {\frac {b \left (1-\sin \left (f x +e \right )\right )}{a +b}}\, \sqrt {\frac {\left (-\sin \left (f x +e \right )-1\right ) b}{a -b}}\, \EllipticPi \left (\sqrt {\frac {a +b \sin \left (f x +e \right )}{a -b}}, -\frac {\left (-\frac {a}{b}+1\right ) b}{a}, \sqrt {\frac {a -b}{a +b}}\right )}{a^{2} \sqrt {-\left (-b \sin \left (f x +e \right )-a \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}\right )}{\cos \left (f x +e \right ) \sqrt {a +b \sin \left (f x +e \right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^2/(a+b*sin(f*x+e))^(1/2),x)

[Out]

(-(-b*sin(f*x+e)-a)*cos(f*x+e)^2)^(1/2)*(-1/a*(-(-b*sin(f*x+e)-a)*cos(f*x+e)^2)^(1/2)/sin(f*x+e)-1/a*b*(a/b-1)
*((a+b*sin(f*x+e))/(a-b))^(1/2)*(b*(1-sin(f*x+e))/(a+b))^(1/2)*((-sin(f*x+e)-1)*b/(a-b))^(1/2)/(-(-b*sin(f*x+e
)-a)*cos(f*x+e)^2)^(1/2)*((-a/b-1)*EllipticE(((a+b*sin(f*x+e))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))+EllipticF(((a
+b*sin(f*x+e))/(a-b))^(1/2),((a-b)/(a+b))^(1/2)))+1/a^2*b^2*(a/b-1)*((a+b*sin(f*x+e))/(a-b))^(1/2)*(b*(1-sin(f
*x+e))/(a+b))^(1/2)*((-sin(f*x+e)-1)*b/(a-b))^(1/2)/(-(-b*sin(f*x+e)-a)*cos(f*x+e)^2)^(1/2)*EllipticPi(((a+b*s
in(f*x+e))/(a-b))^(1/2),-(-a/b+1)/a*b,((a-b)/(a+b))^(1/2)))/cos(f*x+e)/(a+b*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\csc \left (f x + e\right )^{2}}{\sqrt {b \sin \left (f x + e\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2/(a+b*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(csc(f*x + e)^2/sqrt(b*sin(f*x + e) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\sin \left (e+f\,x\right )}^2\,\sqrt {a+b\,\sin \left (e+f\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(e + f*x)^2*(a + b*sin(e + f*x))^(1/2)),x)

[Out]

int(1/(sin(e + f*x)^2*(a + b*sin(e + f*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\csc ^{2}{\left (e + f x \right )}}{\sqrt {a + b \sin {\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**2/(a+b*sin(f*x+e))**(1/2),x)

[Out]

Integral(csc(e + f*x)**2/sqrt(a + b*sin(e + f*x)), x)

________________________________________________________________________________________